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Outline

I. Single Molecule Sequencing

Long read sequencing of a breast cancer cell line

2. Single Cell Copy Number Analysis

Intra-tumor heterogeneity and metastatic progression




Sequence Assembly Problem

|. Shear & Sequence DNA - 1

2. Construct assembly graph from overlapping reads

..AGCCTAGGGATGCGCGACACGT
GGATGCGCGACACGTCGCATATCCGGTTTGGTCAACCTCGGACGGAC
CAACCTCGGACGGACCTCAGCGAA...

3. Simplify assembly graph
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On Algorithmic Complexity of Biomolecular Sequence Assembly Problem
Narzisi, G, Mishra, B, Schatz, MC (2014) Algorithms for Computational Biology. Lecture Notes in Computer Science. Vol. 8542



Assembly Complexity




Counting Eulerian Tours
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Often an astronomical number of possible assemblies
— Value computed by application of the BEST theorem (Hutchinson, 1975)

W(G,t)=(detL){H(ru_1)!}{ I auv!}_l

ueV (u,w)EE

L = n x n matrix with r-a,, along the diagonal and -a,, in entry uv

r, = d*(u)+ 1 if u=t, or d*(u) otherwise

a,, = multiplicity of edge from u to v

Assembly Complexity of Prokaryotic Genomes using Short Reads.
Kingsford C, Schatz MC, Pop M (2010) BMC Bioinformatics. 11:21.



Assembly Complexity




Assembly Complexity
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The advantages of SMRT sequencing
Roberts, R}, Carneiro, MO, Schatz, MC (2013) Genome Biology. 14:405



N50 size

Def: 50% of the genome 1s 1n contigs as large as the N50 value

Example: | Mbp genome 50%
U

33
N50 size = 30 kbp

(300k+100k+45k+45k+30k = 520k >= 500kbp)

A larger N50 is indicative of improvement in every dimension:
* Better resolution of genes and flanking regulatory regions

* Better resolution of transposons and other complex sequences
* Better resolution of chromosome organization



Single Molecule Sequencing
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PacBio SMRT Sequencing

Imaging of fluorescently phospholinked labeled nucleotides
as they are incorporated by a polymerase anchored to a Zero-Mode Waveguide

Intensity

Time http://www.pacificbiosciences.com/assets/files/pacbio_technology backgrounder.pdf



Single Molecule Sequences
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“Corrective Lens” for Sequencing
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Consensus Accuracy and Coverage
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," B observed consensus error rate
o 1 B expected consensus error rate (e=.20)
S T R, O expected consensus error rate (e=.16)
AT O expected consensus error rate (e=.10)

cns error rate
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Coverage can overcome random errors

* Dashed: error model; Solid: observed accuracy

N C i n—i
Koren, Schatz, et al (2012) CNS Error = 2 ( , )(6) (1_6)
Nature Biotechnology. 30:693—700 i=[c/2]



PacBio Assembly Algorithms

PBJelly

Gap Filling

English et al (2012)
PLOS One. 7(11):e47768
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Hybrid Error Correction

Koren, Schatz, et al (2012)
Nature Biotechnology. 30:693—-700

HGAP & Quiver

PriR| T)
Quiver Performance Results

e T X o Comparison to Reference Genom
Pr(R| T) U“[R"” (M. ruber ; 3.1 MB : SMRT* Cells)
) initial A Quiver C

av 43.4 s4.5
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PB-only Correction

Chin et al (2013)
Nature Methods. 10:563-569

PacBio Coverage




PacBio Sequencing
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PacBio Sequencing
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Her2 amplified breast cancer

Breast cancer Her2 amplified breast cancer
 About 12% of women will e 20% of breast cancers

develop breast cancer during e 2-3X recurrence risk

their lifetimes * 5X metastasis risk
 ~230,000 new cases every

year (US) 1.0 1
e ~40,000 deaths every year 5% :: TONPRRNL USSR,

(US) it

gs sl Amplified (n=11)
§ =g c >5 coples

Statistics from American Cancer Society R\ A RS S .
and Mayo Clinic. Time (months)

Recurrence and metastasis from
Gonzalez-Angulo, et al, 2009. (Adapted from Slamon et al, 1987)



SK-BR-3

sadlcit
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(Davidson et al, 2000)
Can we resolve the complex structural variations, especially around Her2?

Ongoing collaboration between CSHL and OICR to de novo assemble
the complete cell line genome with PacBio long reads



Improving SMRTcell Performance

mean: 6.2kb yield: 213Mbp/SMRT cell B OICR November 2014

mean: 8.3kb yield: 620 Mbp/SMRT cell EEE OICR December 2014

mean: 11.3kb yield: 1031 Mbp/SMRT cell mmm OICR February 2015

Okb 10kb 20kb 30kb 40kb S0kb 60kb 70kb



PacBio read length distribution

72.6X coverage

mean: 9kb 60X
49.3X coverage over 10kb

12.0X coverage over 20kb

Okb 10kb 20xb 30kb 40kb S0kb 60kb 70kb 80kb

Il read lengths

max:_71kb

Okb 10kb 20kb 30kb 40kb 50kb 60kb 70kb 80kb




Genome-wide alighment coverage
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Genome-wide coverage averages around 54X
Coverage per chromosome greatly varies



a0 Her2

PacBio
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Her2

PacBio
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Her2

PacBio
67X @ 10kb
R = S X
[llumina
120X @ 100bp ...
<

8 Mb

PacBio and lllumina coverage values are highly correlated
but lllumina shows greater variance because of poorly mapping reads



Her2

PacBio
67X @ 10kb
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Structural variant discovery with long reads
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1. Alignment-based split read analysis: Efficient capture of most events
BWA-MEM + Lumpy

2. Local assembly of regions of interest: In-depth analysis with base-pair precision
Localized HGAP + Celera Assembler + MUMmer

3. Whole genome assembly: In-depth analysis including novel sequences
DNAnexus-enabled version of Falcon

Total Assembly: 2.64Gbp Contig N50: 2.56 Mbp Max Contig: 23.5Mbp



Her2

PacBio :

67X @ 10kb . II
# split reads 11_7 91
llumina

120X @ 100bp ...

# split reads 151,76 91 77 87

<€ >
8 Mb

Green arrow indicates an inverted duplication.
False positive and missing lllumina calls due to mis-mapped reads (especially low complexity).




PacBio
chrl7
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Her2
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Confirmed both known gene fusions in this region



PacBio
chrl7
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Confirmed both known gene fusions in this region



chr8

PacBio
chrl7

) ~ 1.6 Mb ) -

Joint coverage and breakpoint analysis to discover underlying events



Cancer lesion Reconstruction

PacBio
chrl7
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By comparing the proportion of reads that are spanning or split at breakpoints we
can begin to infer the history of the genetic lesions.

1. Healthy diploid genome

2. Original translocation into chromosome 8

3. Duplication, inversion, and inverted duplication within chromosome 8

4. Final duplication from within chromosome 8



SKBR3 Oncogene Analysis

Known missense mutation in p53: R175H

Reference ATCTGAGCAGCGCTCATGGTGGGGGCAQCISECCTCACAACCTCCGTCATGTGCTGTGACTGCTT
Illumina ATCTGAGCAGCGCTCATGGTGGGGGCAGTGCCTCACAACCTCCGTCATGTGCTGTGACTGCTT
PacBio ATCTGAGCAGCGCTCATGGTGGGGGCAGTGCCTCACAACCTCCGTCATGTGCTGTGACTGCTT
His
Oncogene amplifications Known Gene fusions Confirmed by PacBio reads?
TATDN1 GSDMB Yes
ErbB2 (Her2) | =20X
RARA  PKIA Yes
MYC =27X ANKHD1 PCDH1 Yes
MET =8X CCDC85C SETD3 Yes
SUMF1 LRRFIP2 Yes
WDR67 (TBC1D31) ZNF704 Yes
Genetic Lesion DHX35  ITCH Yes
History Analysis NFS1 PREX1 Yes *read-through transcription
Underway CYTH1 EIF3H Yes *nested inside 2 translocations




SK-BR-3 Her2+ Breast
Cancer Reference Genome

Released all data pre-publication to accelerate breast cancer research:

http://schatzlab.cshl.edu/data/skbr3/

Available today under the Toronto Agreement:

* Fastq & BAM files of aligned reads

* Interactive Coverage Analysis with BAM.IOBIO
 Whole genome assembly

Available soon
* Whole genome methylation analysis

* Full-length cDNA Transcriptome analysis
e Comparison to single cell analysis of >100 individual cells



SK-BR-3 Her2+ Breast
Cancer Reference Genome
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* Fast
e |nte New Results
* Wh Error correction and assembly complexity of single molecule sequencing reads.
Availal Hayan Lee |, James Gurrowskl . Shinjae Yoo . Shoshana Marcus . W. Richard McComibee . Michael Schacz
 Wh doi: Mepidedoiorg/ 10 1101006395
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Full-Tengtn CONA Transcriptome anarlysis
Comparison to single cell analysis of >100 individual cells



Outline

I. Single Molecule Sequencing

Long read sequencing of a breast cancer cell line

2. Single Cell Copy Number Analysis

Intra-tumor heterogeneity and metastatic progression




Single Cell Sequencing
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Recombination /
Crossover in germ cells

Circulating tumor cells
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Clonal Evolution
in tumors




LETTER

Tumour evolution inferred by single-cell sequencing

Nicholas Navin'?, Jude Kendall', Jennifer Troge', Peter Andrews’, Linda Rodgers', Jeanne McIndoo', Kerry Cook’,
Asya Stepansky’, Dan Levy', Diane Esposito’, Lakshmi Muthuswamy”, Alex Krasnitz', W. Richard McCombie’, James Hicks'
& Michael Wigler'

@0i:10.1038/nature09807
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Copy-number Profiles




Whole Genome Amplification

ONE GENOME FROM MANY

Sequencing the gernoames of ungle Cells is nmdar 10 sequencing
IHose o mubipie Cels — DUt erroes are more bisely
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Brian Owens, Nature News 2012



Whole Genome Amplification

ONE GENOME FROM MANY

Sequencing the gernomes of ungle Cells is nmdar 10 sequencing
Ihose o mubipie Cels — Dut erroes are more bisely
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Whole Genome Amplification Techniques
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MALBAC (Multiple Annealing and Looping Based Amplification Cycles)

Interactive Analysis and Quality Assessment of Single Cell Copy Number Variations
Garvin, T., Aboukhalil, R. et al. (2014) Under review



Data are noisy
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* Potential for biases at every step
— WGA: Non-uniform amplification
— Library Preparation: Low complexity, read duplications, barcoding
— Sequencing: GC artifacts, short reads
— Computational analysis: mappability, GC correction, segmentation, tree building

Coverage is too sparse and noisy for SNP analysis, requires special processing



|) Binning
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Single Cell CNV analysis
= Divide the genome into “bins” with ~50 — 100 reads / bin

= Map the reads and count reads per bin
Use uniquely mappable bases to establish bins



|) Binning

Single Cell CNV analysis
= Divide the genome into “bins” with ~50 — 100 reads / bin
= Map the reads and count reads per bin

Use uniquely mappable bases to establish bins



|) Binning
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Single Cell CNV analysis
= Divide the genome into “bins” with ~50 — 100 reads / bin

= Map the reads and count reads per bin
Use uniquely mappable bases to establish bins



Nomalzed Read Counts

10 25 40

2) Normalization

Read Counts
E > 0
h L] L] L] . L] L] .
o 10000 20000 30000 40000 S0000 €0000
Read Counts (Normalized to a mean of 1)
B e T e e e e e S e T e e e e - T T e T e e

Also correct for mappability, GC content, amplification biases



Normalized Read Counts

L1 1. 1

3) Segmentation
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4) Estimating Copy Number

Fend Counts Scated by Sof Mulipter (1.7)
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5) Cells to Populations
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Gingko

http://gb.cshl.edu/ginkgo

Interactive Single Cell CNV analysis & clustering

— Easy-to-use, web interface, parameterized for binning,
segmentation, clustering, etc

— Per cell through project-wide analysis in any species

Compare MDA, DOP-PCR, and MALBAC

— DOP-PCR shows superior resolution and consistency

Available for collaboration
— Extending clustering methods, prototyping scRNA




Gingko

http://gb.cshl.edu/ginkgo
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Tyler Garvin , Robert Aboukhalil , Jude Kendall , Timour Baslan , Gurinder S Atwal | James Hicks , Michael
1 Wigle ol Scha

Avai igler , Michael Schatz

doi: http//dx.doiorg/10.1101/011346
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Pan-Genome Alignment & Assembly
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Time to start focusing on problems

studying populations of complete

genomes

* Available today for many microbial
species, near future for higher eukaryotes

Pan-genome colored de Bruijn graph

* Encodes all the sequence relationships
between the genomes

* How well conserved is a given sequence?

SplitMEM: A graphical algorithm for pan-genome analysis with suffix skips
Marcus, S, Lee, H, Schatz MC (2014) Bioinformatics. doi: 10.1093/bioinformatics/btu756

Extending reference assembly models

Church, D. et al. (2015) Genome Biology. doi:10.1186/s13059-015-0587-3




Understanding Genome Structure & Function

Single Molecule Sequencing

Now have the ability to perfectly assemble microbes
and many small eukaryotes, reference quality assemblies

of larger eukaryotes

Single Cell Sequencing

Exciting technologies to probe the genetic and molecular
composition of complex environments

e

These advances give us incredible power to study how genomes mutate and evolve

Largely limited by our quantitative power to make comparisons and find patterns
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Genome Informatics

Janet Kelso, Daniel MacArthur, Michael Schatz
Oct 28 - 31,2015

Thank you

http://schatzlab.cshl.edu
@mike schatz




