Algorithms for single cell and single molecule biology

Michael Schatz

March 27, 2015
Biotech Symposium / Simons Foundation

Schatzlab Overview

Human Genetics

Autism, Cancer,
Psychiatric Disorders

Narzisi et al. (2014) lossifov et al. (2014)

Plant Biology

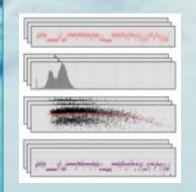
Genomes & Transcriptomes

Schatz et al. (2014) Ming et al. (2013)

Informatics

Ultra-large scale biocomputing

Blood et al. (2014) Schatz et al. (2013)



Biotechnology

Single Cell & Single Molecule Analysis

Garvin et al. (2014) Roberts et al. (2013)

Outline

I. Single Molecule Sequencing

Long read sequencing of a breast cancer cell line

2. Single Cell Copy Number Analysis

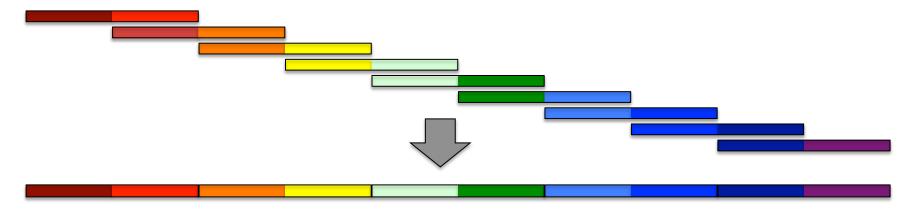
Intra-tumor heterogeneity and metastatic progression

Sequence Assembly Problem

I. Shear & Sequence DNA

2. Construct assembly graph from overlapping reads

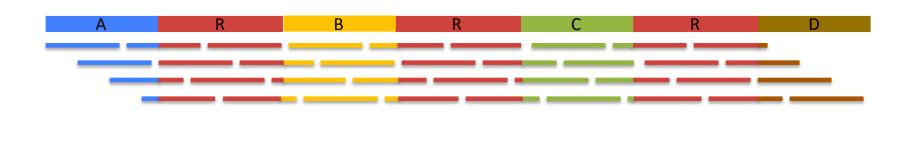
3. Simplify assembly graph

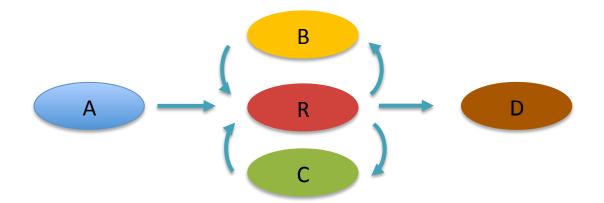


On Algorithmic Complexity of Biomolecular Sequence Assembly Problem

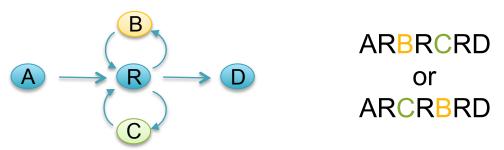
Narzisi, G, Mishra, B, Schatz, MC (2014) Algorithms for Computational Biology. Lecture Notes in Computer Science. Vol. 8542

Assembly Complexity





Counting Eulerian Tours



Often an astronomical number of possible assemblies

Value computed by application of the BEST theorem (Hutchinson, 1975)

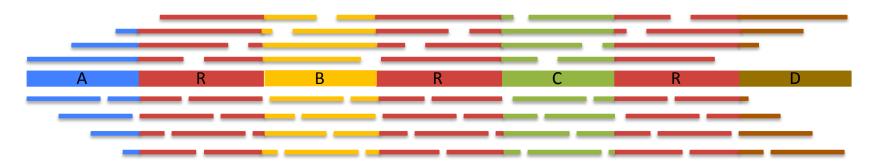
$$\mathcal{W}(G,t) = (\det L) \Big\{ \prod_{u \in V} (r_u - 1)! \Big\} \Big\{ \prod_{(u,v) \in E} a_{uv}! \Big\}^{-1}$$

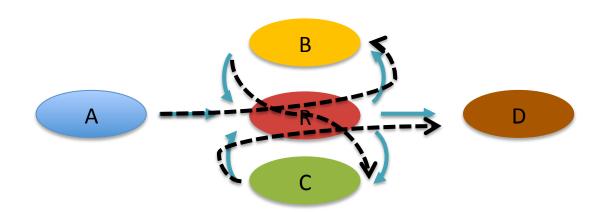
L = $n \times n$ matrix with r_u - a_{uu} along the diagonal and - a_{uv} in entry uv $r_u = d^+(u) + l$ if u = t, or $d^+(u)$ otherwise $a_{uv} = \text{multiplicity of edge from } u \text{ to } v$

Assembly Complexity of Prokaryotic Genomes using Short Reads.

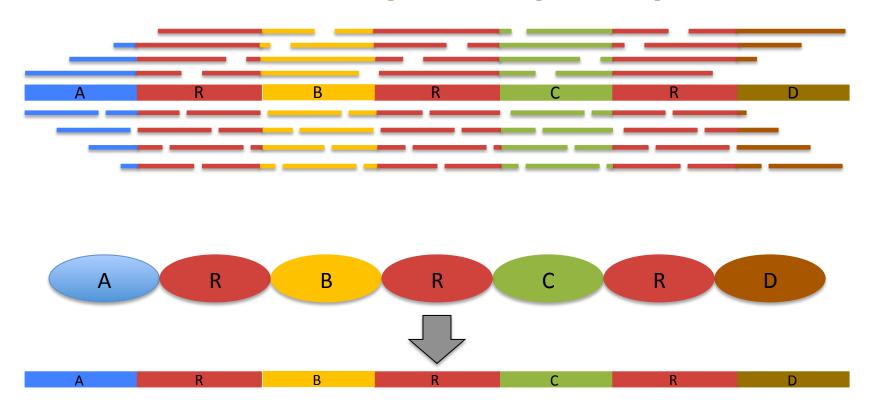
Kingsford C, Schatz MC, Pop M (2010) BMC Bioinformatics. 11:21.

Assembly Complexity





Assembly Complexity



The advantages of SMRT sequencing

Roberts, RJ, Carneiro, MO, Schatz, MC (2013) Genome Biology. 14:405

N50 size

Def: 50% of the genome is in contigs as large as the N50 value

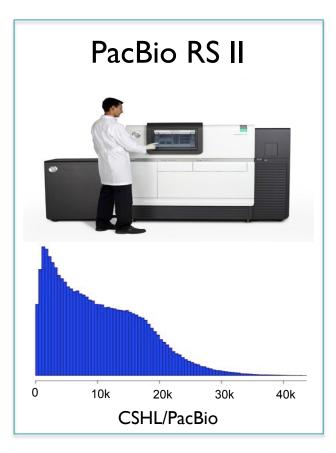
Example: I Mbp genome 50%

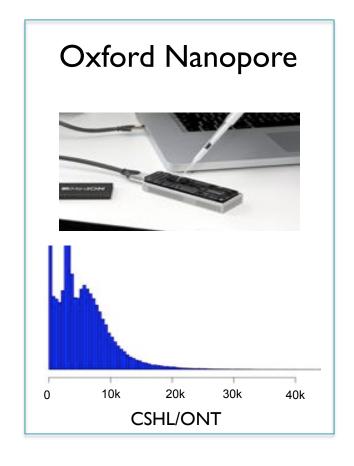
N50 size = 30 kbp
$$(300k+100k+45k+45k+30k = 520k >= 500kbp)$$

A larger N50 is indicative of improvement in every dimension:

- Better resolution of genes and flanking regulatory regions
- Better resolution of transposons and other complex sequences
- Better resolution of chromosome organization

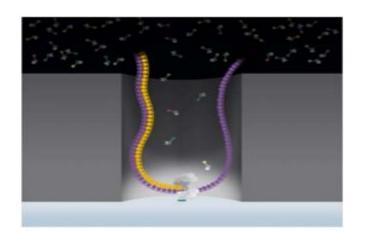
Single Molecule Sequencing

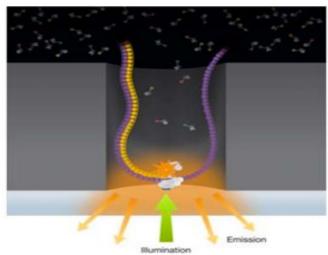


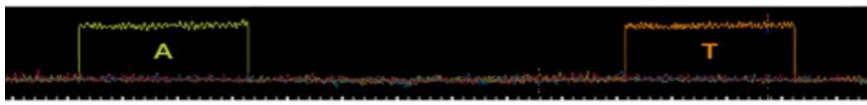


PacBio SMRT Sequencing

Imaging of fluorescently phospholinked labeled nucleotides as they are incorporated by a polymerase anchored to a Zero-Mode Waveguide





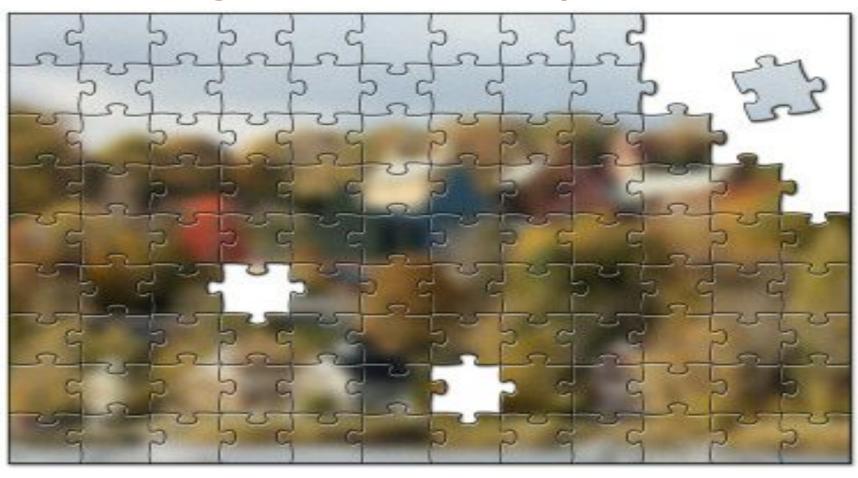


Time

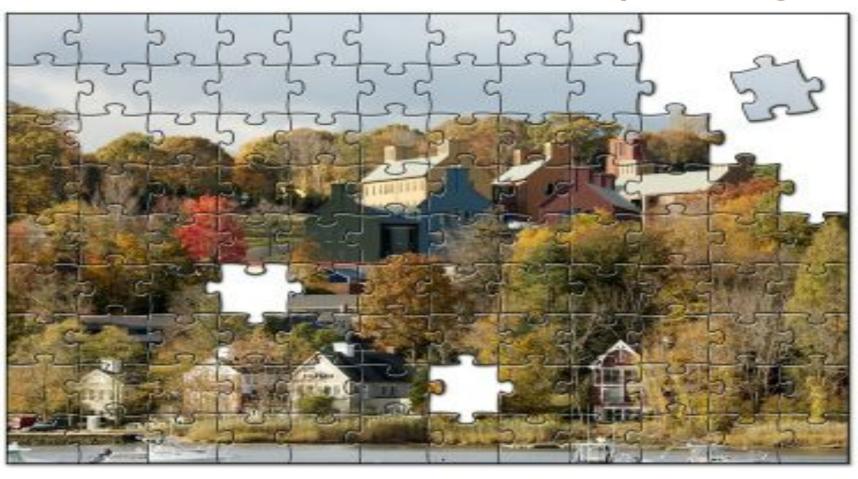
Intensity

http://www.pacificbiosciences.com/assets/files/pacbio_technology_backgrounder.pdf

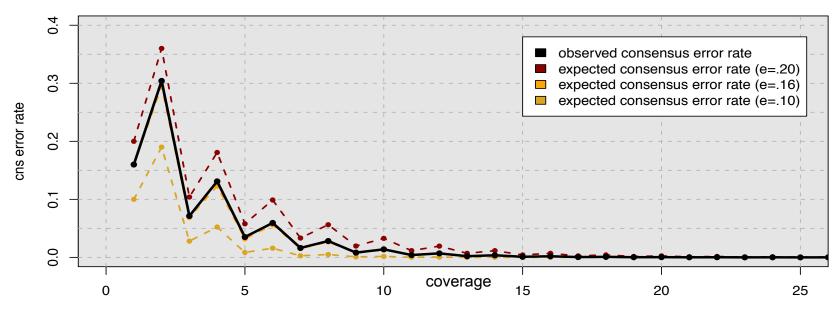
Single Molecule Sequences



"Corrective Lens" for Sequencing



Consensus Accuracy and Coverage



Coverage can overcome random errors

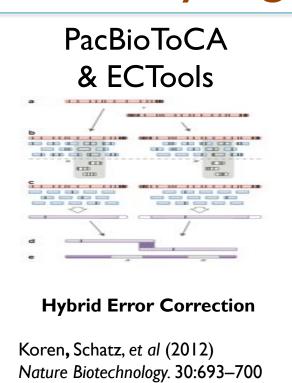
Dashed: error model; Solid: observed accuracy

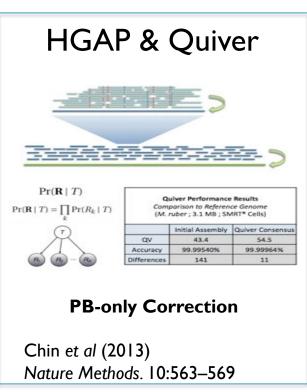
Koren, Schatz, et al (2012) Nature Biotechnology. 30:693–700

$$CNSError = \sum_{i=\lceil c/2 \rceil}^{c} {c \choose i} (e)^{i} (1-e)^{n-i}$$

PacBio Assembly Algorithms

PBJelly Gap Filling English et al (2012) PLOS One. 7(11): e47768



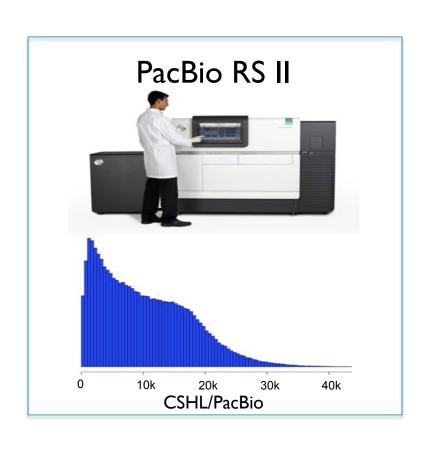


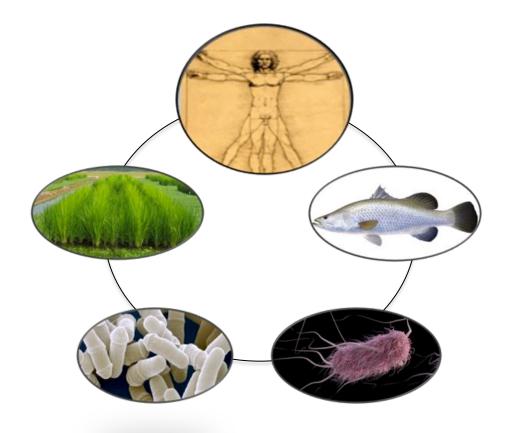
< 5x

PacBio Coverage

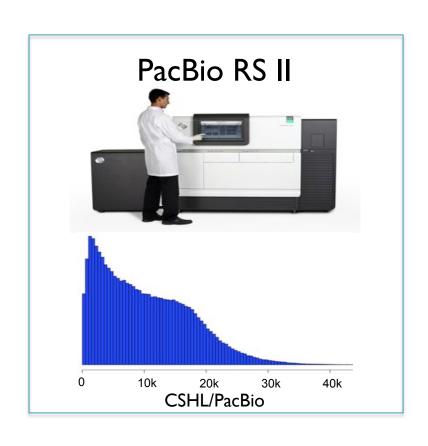
> 50x

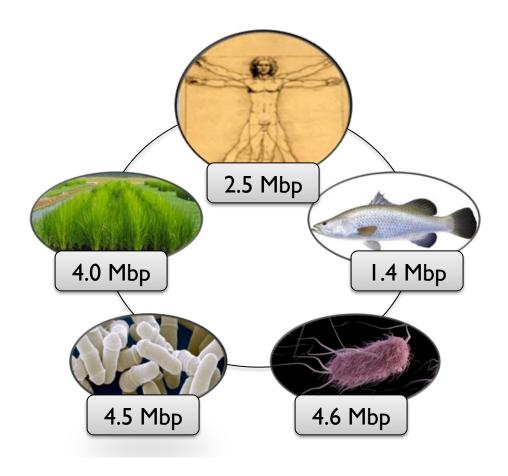
PacBio Sequencing





PacBio Sequencing





Her2 amplified breast cancer

Breast cancer

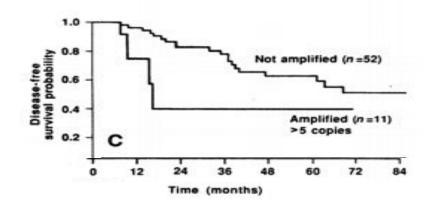
- About 12% of women will develop breast cancer during their lifetimes
- ~230,000 new cases every year (US)
- ~40,000 deaths every year
 (US)

Statistics from American Cancer Society and Mayo Clinic.

Recurrence and metastasis from Gonzalez-Angulo, et al, 2009.

Her2 amplified breast cancer

- 20% of breast cancers
- 2-3X recurrence risk
- 5X metastasis risk



(Adapted from Slamon et al, 1987)

SK-BR-3

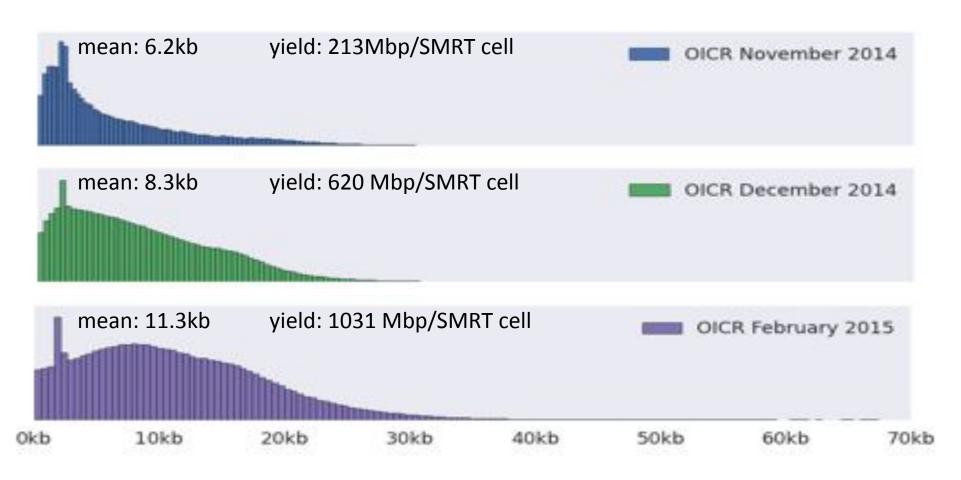
Most commonly used Her2+ breast cancer cell lin

(Davidson et al, 2000)

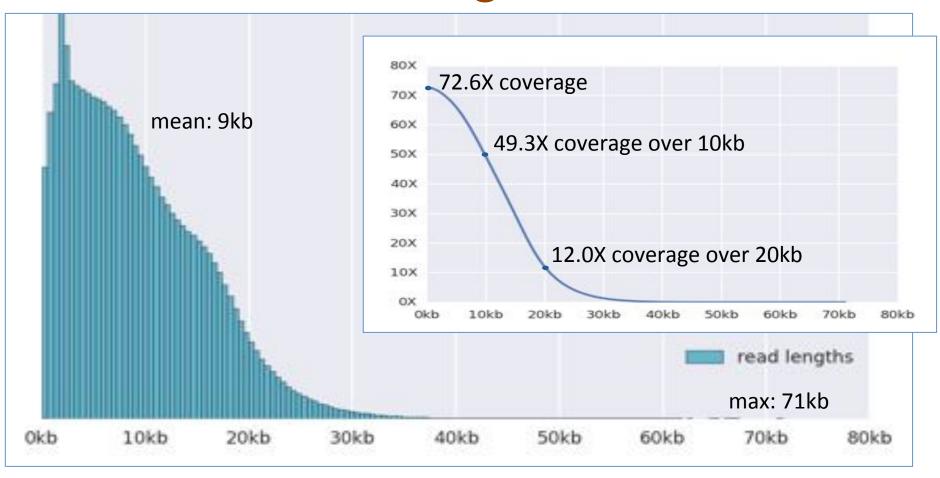
Can we resolve the complex structural variations, especially around Her2?

Ongoing collaboration between CSHL and OICR to *de novo* assemble the complete cell line genome with PacBio long reads

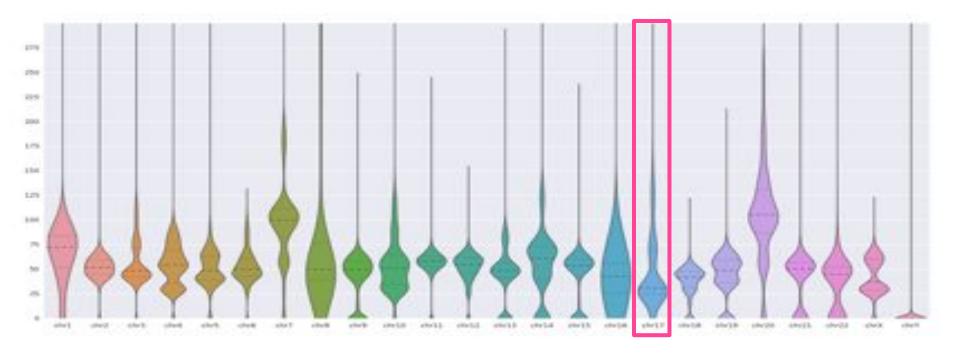
Improving SMRTcell Performance



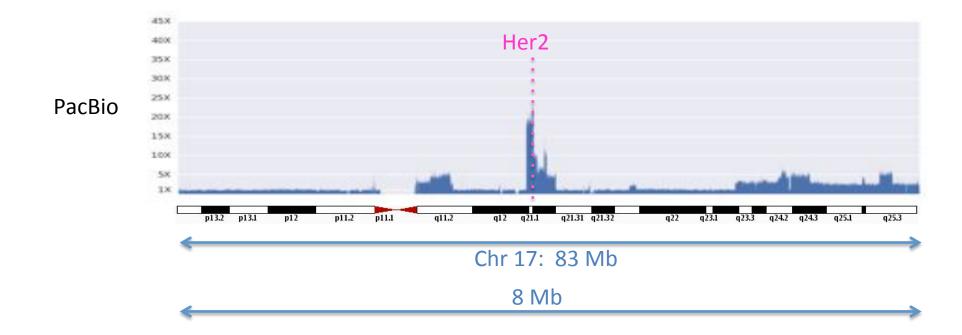
PacBio read length distribution

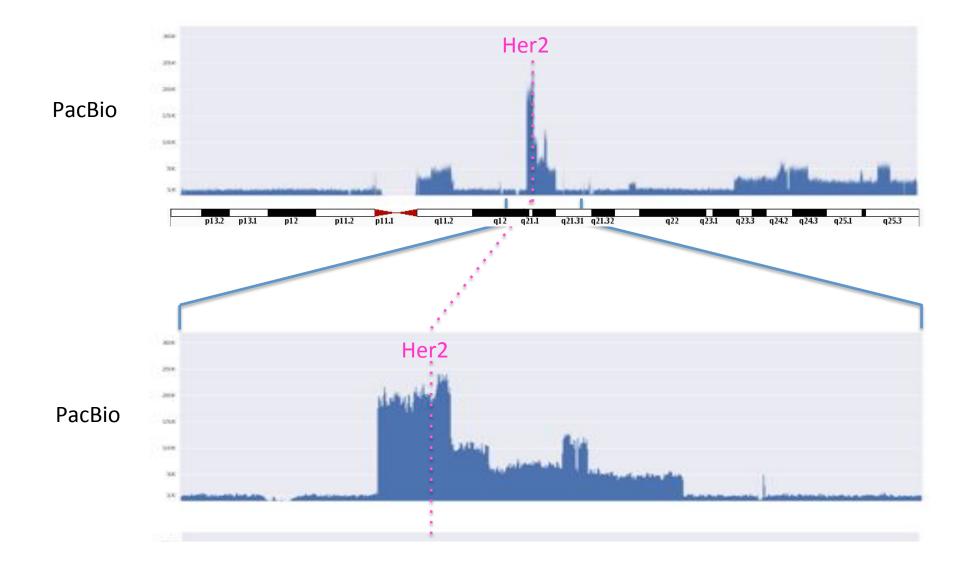


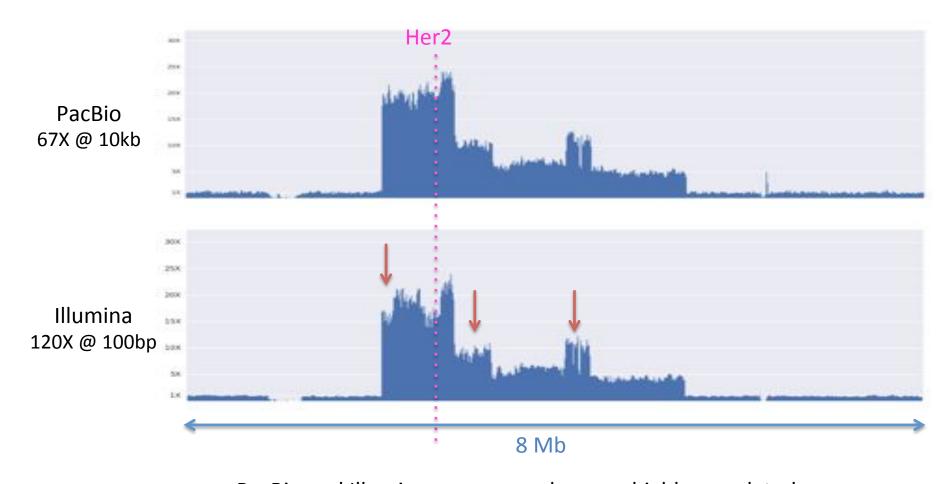
Genome-wide alignment coverage



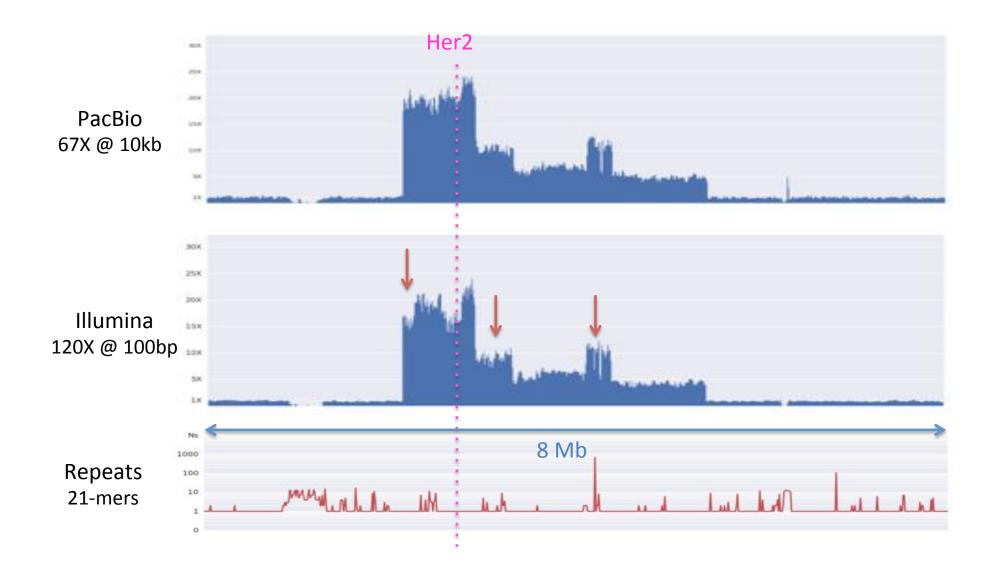
Genome-wide coverage averages around 54X Coverage per chromosome greatly varies



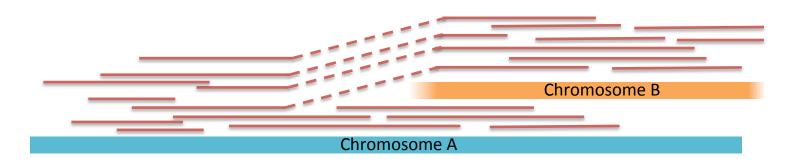




PacBio and Illumina coverage values are highly correlated but Illumina shows greater variance because of poorly mapping reads



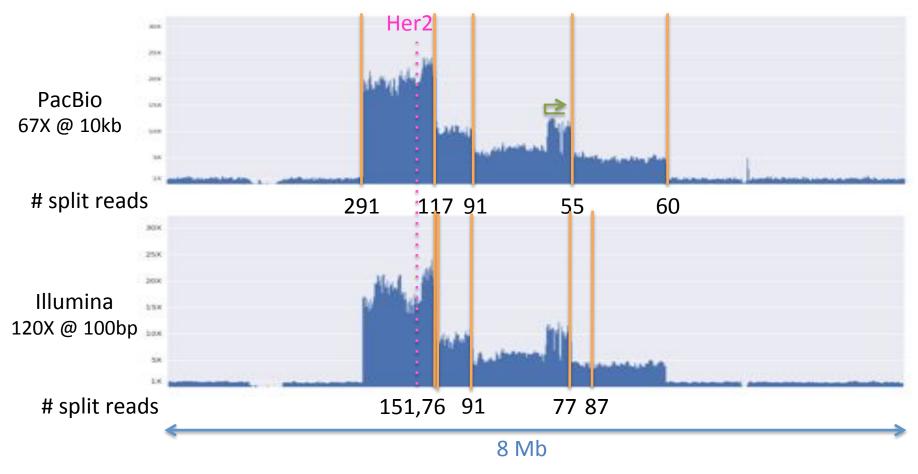
Structural variant discovery with long reads



- 1. Alignment-based split read analysis: Efficient capture of most events BWA-MEM + Lumpy
- 2. Local assembly of regions of interest: In-depth analysis with base-pair precision

 Localized HGAP + Celera Assembler + MUMmer
- **3. Whole genome assembly: In-depth analysis including** *novel sequences* DNAnexus-enabled version of Falcon

Total Assembly: 2.64Gbp Contig N50: 2.56 Mbp Max Contig: 23.5Mbp

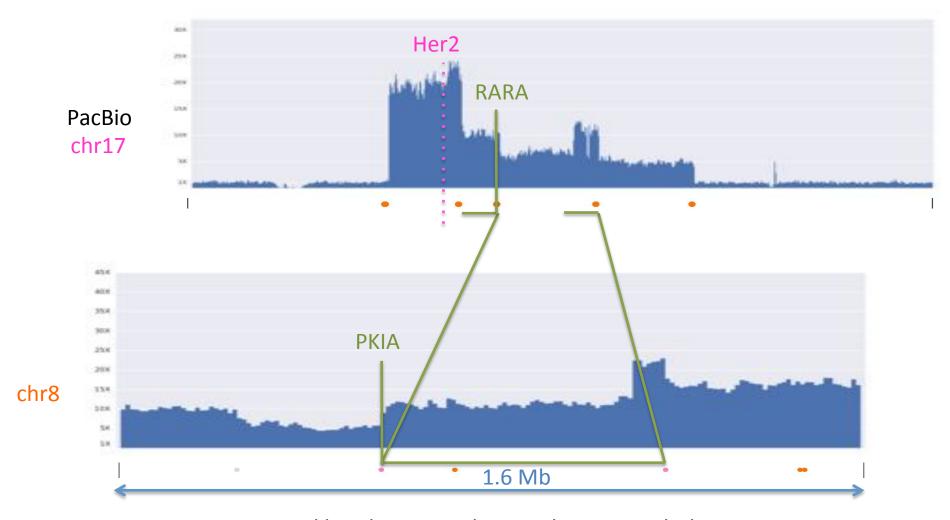


Green arrow indicates an inverted duplication.
False positive and missing Illumina calls due to mis-mapped reads (especially low complexity).

Confirmed both known gene fusions in this region

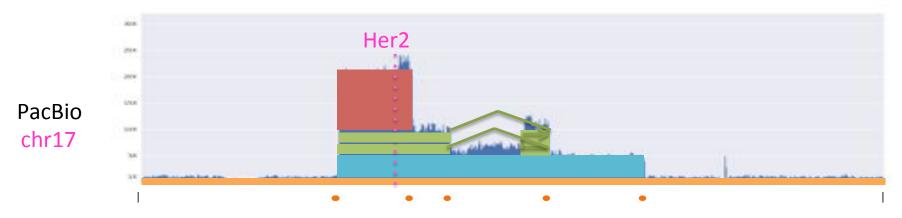


Confirmed both known gene fusions in this region



Joint coverage and breakpoint analysis to discover underlying events

Cancer lesion Reconstruction



By comparing the proportion of reads that are spanning or split at breakpoints we can begin to infer the history of the genetic lesions.

- 1. Healthy diploid genome
- 2. Original translocation into chromosome 8
- 3. Duplication, inversion, and inverted duplication within chromosome 8
- 4. Final duplication from within chromosome 8

SKBR3 Oncogene Analysis

Known missense mutation in p53: R175H

Arg

Reference Illumina PacBio ATCTGAGCAGCGCTCATGGTGGGGGGCAGCGCCTCACAACCTCCGTCATGTGCTGTGACTGCTT
ATCTGAGCAGCGCTCATGGTGGGGGGCAGCCCTCACAACCTCCGTCATGTGCTGTGACTGCTT
ATCTGAGCAGCGCTCATGGTGGGGGGCAGCCCTCACAACCTCCGTCATGTGCTGTGACTGCTT

His

Oncogene amplifications		
ErbB2 (Her2)	≈20X	
MYC	≈27X	
MET	≈8X	

Genetic Lesion
History Analysis
Underway

Known Gene fusi	ons	Confirmed by PacBio reads?
TATDN1	GSDMB	Yes
RARA	PKIA	Yes
ANKHD1	PCDH1	Yes
CCDC85C	SETD3	Yes
SUMF1	LRRFIP2	Yes
WDR67 (TBC1D31)	ZNF704	Yes
DHX35	ITCH	Yes
NFS1	PREX1	Yes *read-through transcription
CYTH1	EIF3H	Yes *nested inside 2 translocations

SK-BR-3 Her2+ Breast Cancer Reference Genome

Released all data pre-publication to accelerate breast cancer research:

http://schatzlab.cshl.edu/data/skbr3/

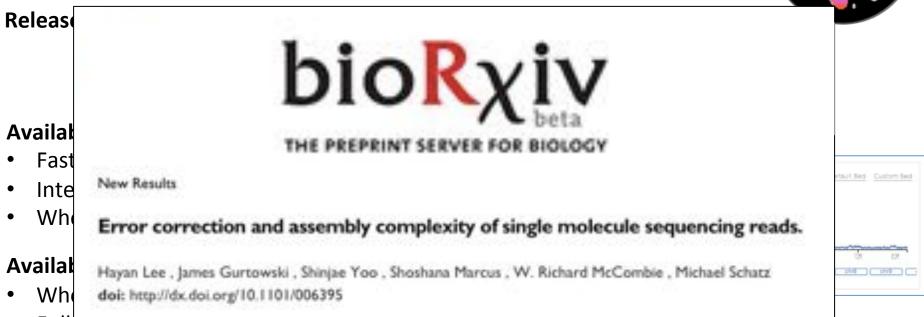
Available *today* **under the Toronto Agreement:**

- Fastq & BAM files of aligned reads
- Interactive Coverage Analysis with BAM.IOBIO
- Whole genome assembly

Available soon

- Whole genome methylation analysis
- Full-length cDNA Transcriptome analysis
- Comparison to single cell analysis of >100 individual cells

SK-BR-3 Her2+ Breast Cancer Reference Genome



- Full-rength colva Transcriptome analysis
- Comparison to single cell analysis of >100 individual cells

Outline

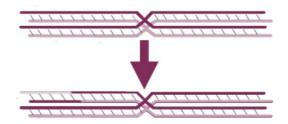
I. Single Molecule Sequencing

Long read sequencing of a breast cancer cell line

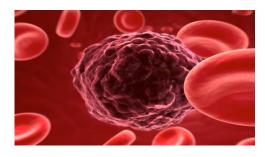
2. Single Cell Copy Number Analysis

Intra-tumor heterogeneity and metastatic progression

Single Cell Sequencing

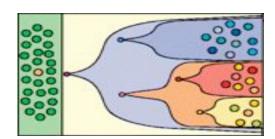


Recombination / Crossover in germ cells



Circulating tumor cells

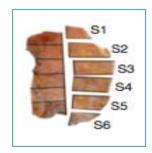
Neuronal mosaicism

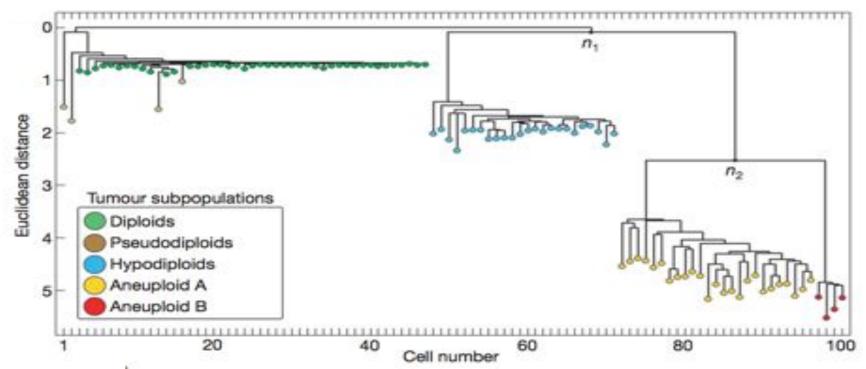


Clonal Evolution in tumors

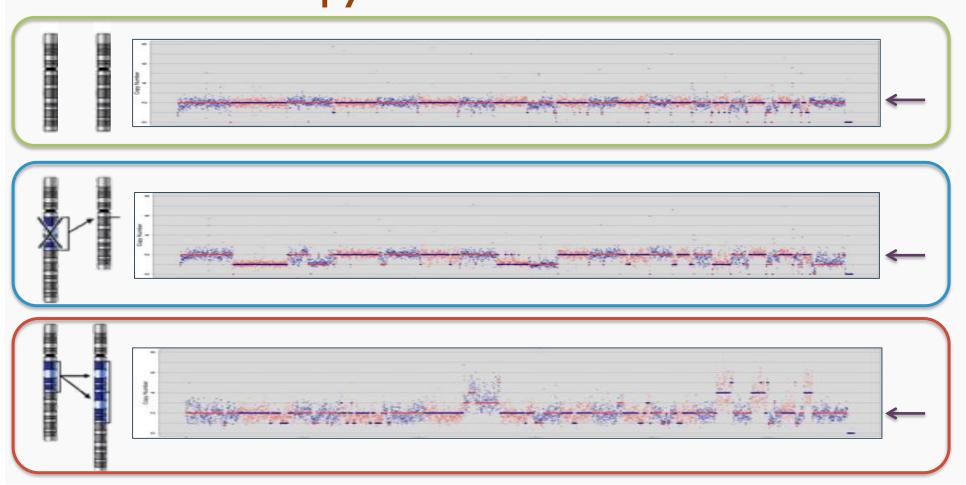
Tumour evolution inferred by single-cell sequencing

Nicholas Navin^{1,2}, Jude Kendall¹, Jennifer Troge¹, Peter Andrews¹, Linda Rodgers¹, Jeanne McIndoo¹, Kerry Cook¹, Asya Stepansky¹, Dan Levy¹, Diane Esposito¹, Lakshmi Muthuswamy³, Alex Krasnitz¹, W. Richard McCombie¹, James Hicks¹ & Michael Wigler¹

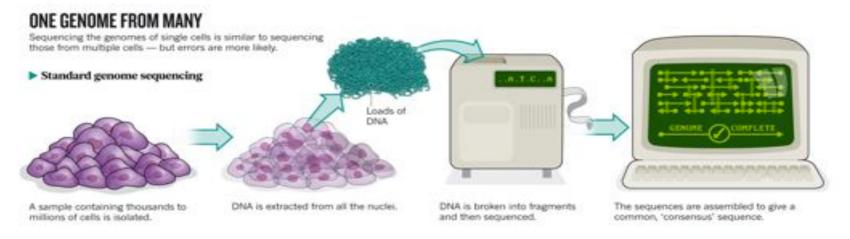




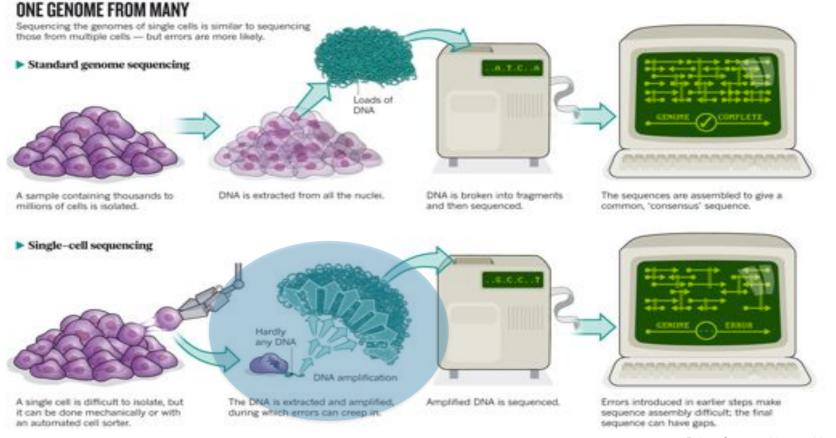
Copy-number Profiles



Whole Genome Amplification

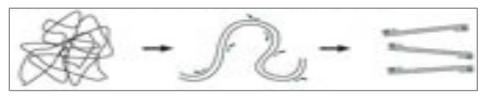


Whole Genome Amplification

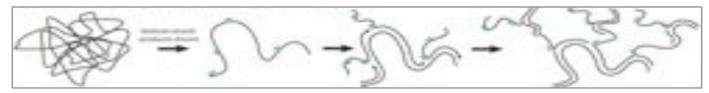


Brian Owens, Nature News 2012

Whole Genome Amplification Techniques



DOP-PCR (Degenerate Oligonucleotide Primed PCR)

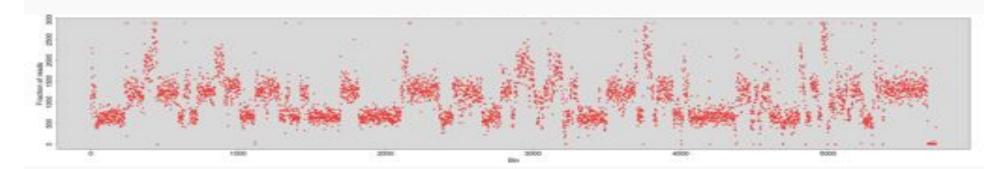


MDA (Multiple Displacement Amplification)

MALBAC (Multiple Annealing and Looping Based Amplification Cycles)

Interactive Analysis and Quality Assessment of Single Cell Copy Number Variations Garvin, T., Aboukhalil, R. et al. (2014) Under review

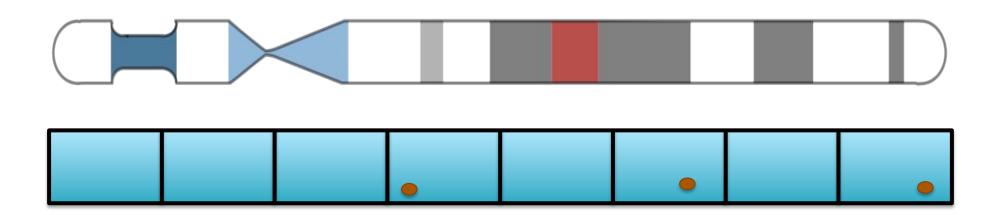
Data are noisy



- Potential for biases at every step
 - WGA: Non-uniform amplification
 - Library Preparation: Low complexity, read duplications, barcoding
 - Sequencing: GC artifacts, short reads
 - Computational analysis: mappability, GC correction, segmentation, tree building

Coverage is too sparse and noisy for SNP analysis, requires special processing

1) Binning

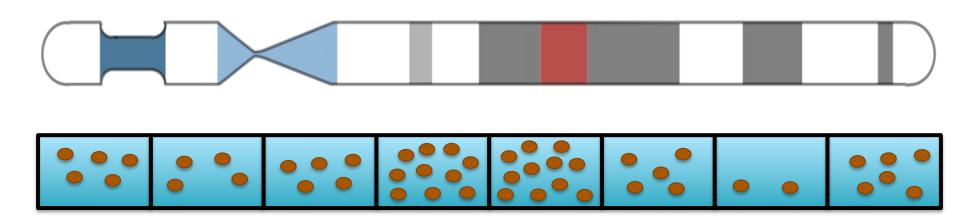


Single Cell CNV analysis

- Divide the genome into "bins" with ~50 100 reads / bin
- Map the reads and count reads per bin

Use uniquely mappable bases to establish bins

I) Binning

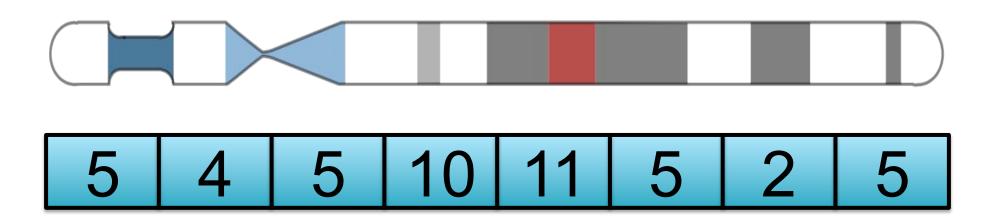


Single Cell CNV analysis

- Divide the genome into "bins" with ~50 100 reads / bin
- Map the reads and count reads per bin

Use uniquely mappable bases to establish bins

I) Binning

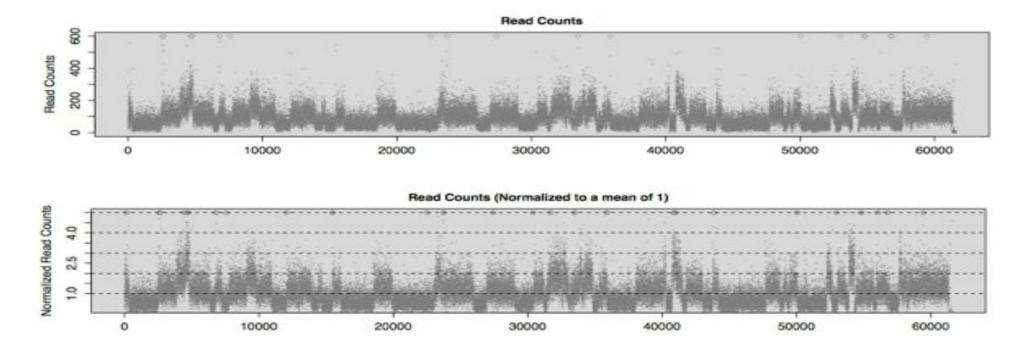


Single Cell CNV analysis

- Divide the genome into "bins" with ~50 100 reads / bin
- Map the reads and count reads per bin

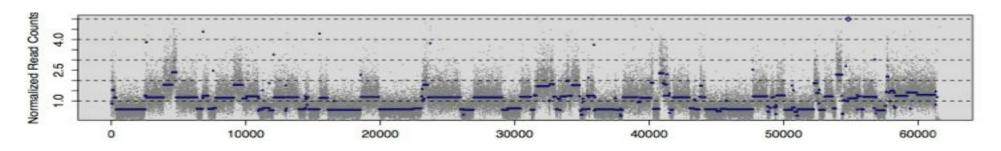
Use uniquely mappable bases to establish bins

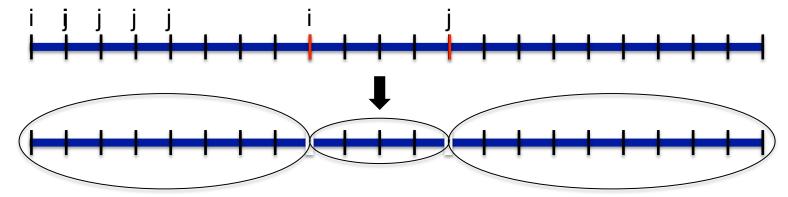
2) Normalization



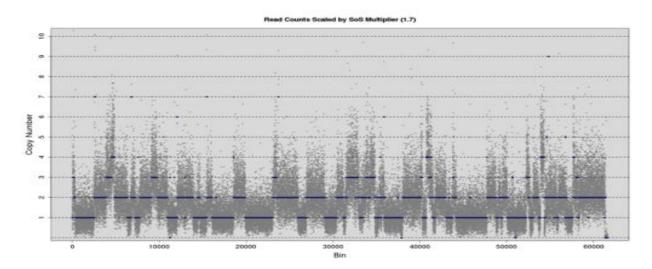
Also correct for mappability, GC content, amplification biases

3) Segmentation



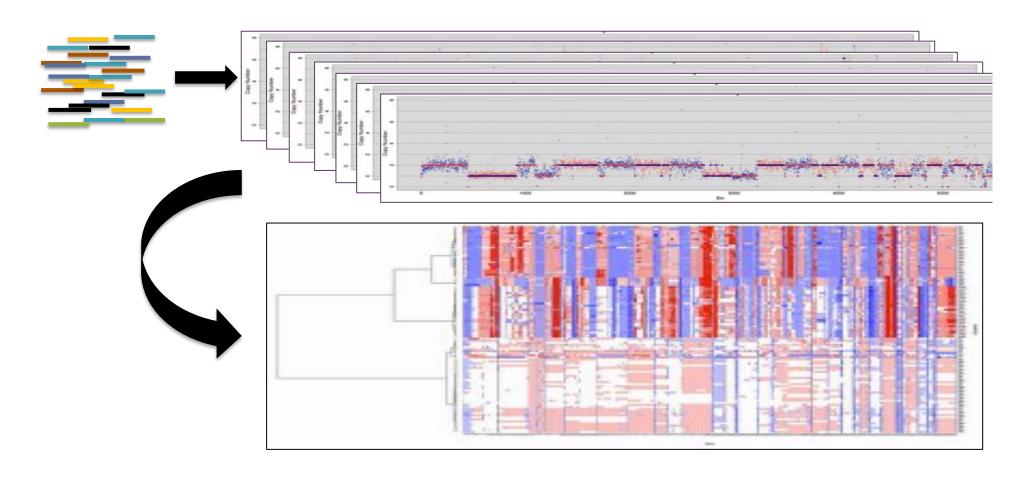


4) Estimating Copy Number



$$CN = argmin \left\{ \sum_{i,j} (\hat{Y}_{i,j} - Y_{i,j}) \right\}$$

5) Cells to Populations



Gingko http://qb.cshl.edu/ginkgo

Interactive Single Cell CNV analysis & clustering

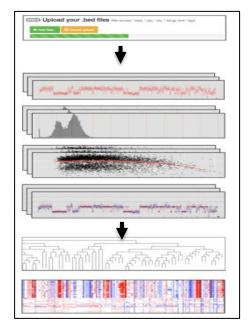
- Easy-to-use, web interface, parameterized for binning, segmentation, clustering, etc
- Per cell through project-wide analysis in any species

Compare MDA, DOP-PCR, and MALBAC

DOP-PCR shows superior resolution and consistency

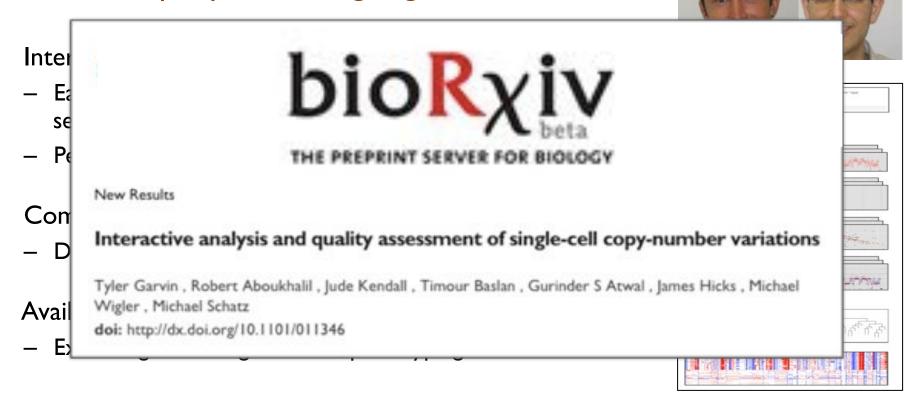
Available for collaboration

Extending clustering methods, prototyping scRNA

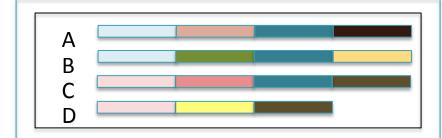


Gingko

http://qb.cshl.edu/ginkgo

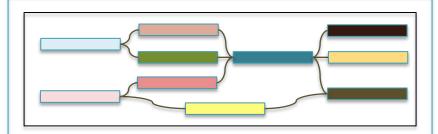


Pan-Genome Alignment & Assembly



Time to start focusing on problems studying populations of complete genomes

 Available today for many microbial species, near future for higher eukaryotes



Pan-genome colored de Bruijn graph

- Encodes all the sequence relationships between the genomes
- How well conserved is a given sequence?

SplitMEM: A graphical algorithm for pan-genome analysis with suffix skips

Marcus, S, Lee, H, Schatz MC (2014) Bioinformatics. doi: 10.1093/bioinformatics/btu756

Extending reference assembly models

Church, D. et al. (2015) Genome Biology. doi:10.1186/s13059-015-0587-3

Understanding Genome Structure & Function

Single Molecule Sequencing

Now have the ability to **perfectly assemble** microbes and many small eukaryotes, **reference quality** assemblies of larger eukaryotes

Single Cell Sequencing

Exciting technologies to probe the genetic and molecular composition of complex environments

These advances give us incredible power to study how genomes mutate and evolve

Largely limited by our quantitative power to make comparisons and find patterns

Acknowledgements

Schatz Lab Rahul Amin **Eric Biggers** Han Fang Tyler Gavin James Gurtowski Ke Jiang

Hayan Lee Zak Lemmon Shoshana Marcus Giuseppe Narzisi Maria Nattestad

Srividya Ramakrishnan Wigler Lab Rachel Sherman **Greg Vurture** Alejandro Wences

Aspyn Palatnick

CSHL

Tossifov Lah

Lippman Lab

Martienssen Lab

McCombie Lab

Tuveson Lab

Ware Lab

Levy Lab

Lyon Lab

Hannon Lab Karen Ng **Timothy Beck** Gingeras Lab

lackson Lab Yoqi Sundaravadanam Hicks Lab

OICR

John McPherson

NBACC

Adam Phillippy

Serge Koren

Pacific Biosciences Oxford Nanopore

Institute

Genome Research

Thank you

http://schatzlab.cshl.edu @mike_schatz